Guide de sélection

Thermal Management
Le Thermal Management :

En 1965, Gordon MOORE, co-fondateur d’Intel, a observé que tous les 1.5 / 2 ans environ, le nombre de transistors doublait sur une même surface de circuit imprimé. Cette Loi de Moore a duré plus de 45 ans et est encore assez précise, et s’est élargie pour inclure de nombreuses technologies électroniques. Comme les appareils électroniques deviennent de plus en plus puissants tout en étant de plus en plus petits, les puces et autres composants dégagent de plus en plus d’énergie calorique. Au dessus d’une température de consigne, la chaleur dégrade les performances du composant et peut éventuellement ralentir voire endommager le dispositif. Le thermal management (gestion de la température) est donc nécessaire à toute application électronique. Afin d’évacuer cette chaleur, l’utilisation de dissipateur thermique est nécessaire. La surface métallique de ces produits, même polie, conserve une certaine rugosité, le contact entre le composant et le dissipateur n’est donc jamais de 100% et il reste un espace entre les deux surfaces. Pour combler cet espace, on utilise conjointement avec le dissipateur, un matériau d’interface thermique pour assurer un contact optimum entre le dissipateur et la source de chaleur, permettant une conductivité thermique plus efficace.

GUIDE DE SELECTION

Samaro® édite régulièrement des guides de sélection spécialisés dans différents secteurs d’activité ainsi que sur différentes chimies / technologies. Ce guide de sélection des produits liés au thermal management (gestion de la conductivité thermique) a pour but de vous orienter vers des solutions déjà éprouvées dans l’industrie. Chaque application étant différente, nous vous conseillons, en cas de doute, de nous contacter, afin que nos experts techniques puissent vous apporter le support adapté à l’exigence de votre application. Samaro® propose dans les pages suivantes une liste non exhaustive de produits classés par type de solution : thermal pads, compounds, encapsulants thermo-conducteurs, printable pads, adhésifs thermo-conducteurs et matériaux à changement de phase (PCM).
Sommaire

Adhésifs Thermo-Conducteurs .. 4-5
Compounds ... 6
Printable Pads .. 7
Liquid Gap Filling Materials ... 7
Thermal Pads ... 8-9
Interfaces thermiques ... 9
Matériaux à changement de phase 10
Adhésifs Thermiques .. 10
Interfaces Graphite ... 10
Encapsulants Thermo-Conducteurs 11

Calcul de la résistance thermique d’un ensemble, RTIM :

\[R_{\text{TIM}} = \frac{BLT}{k_{\text{TIM}}} + R_c + R_s \]

- \(BLT \) : Épaisseur du Matériau d’interface thermique (TIM)
- \(k_{\text{TIM}} \) : Conductivité thermique
- \(R_c \) : Résistance de contact entre le matériau d’interface thermique et les deux surfaces.

Objectif > Réduire RTIM :

- Augmenter la conductivité thermique du TIM (kTIM)
- Réduire l’épaisseur du matériau d’interface thermique (BLT)
- Réduire les résistances de contact (Rc)
Les adhésifs thermo-conducteurs ont les mêmes avantages que les adhésifs standards avec en plus la caractéristique de conductivité thermique.

Ces adhésifs sont utilisés quand une liaison permanente est souhaitée, où une fixation mécanique n’est pas possible ou indésirable, où des mouvements thermiques sont nécessaires à l’articulation du lien, et où il est peu probable d'avoir une opération de maintenance, ou que des retouches soient nécessaires.

Les adhésifs thermo-conducteurs sont parfaitement adaptés dans des applications de collage de composants de puissance, de dissipateurs de chaleur, ainsi que pour d'autres applications où la flexibilité et la conductivité thermique sont des préoccupations majeures.

Les versions fluides polymérisant à chaud sont également adaptées pour les transformateurs, les alimentations, les bobines et autres appareils électroniques où une conductivité thermique améliorée est nécessaire.

Les silicones génèrent très peu de stress au niveau des composants même lorsqu'ils contiennent des charges conductrices thermiques.

Polymérisation à température ambiante (RTV)

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Conductivité Thermique (W/m.K)</th>
<th>Viscosité (mPa.s)</th>
<th>Duréité Shore</th>
<th>Réussite à la traction (MPa)</th>
<th>Elongation (%)</th>
<th>Plage de température (°C)</th>
<th>Rigidité Diélectrique (kV/mm)</th>
<th>Conditionnements</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILICONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dow Corning® SE4485</td>
<td>Blanc • Mono composant • Norme : UL94 V-0</td>
<td>2,8</td>
<td>NA</td>
<td>A90</td>
<td>3,4</td>
<td>20</td>
<td>-45°C à 200°C</td>
<td>Cartouche: 330ml</td>
</tr>
<tr>
<td>Dow Corning® SE4485L</td>
<td>Blanc • Mono composant</td>
<td>2,2</td>
<td>NA</td>
<td>A90</td>
<td>5,1</td>
<td>20</td>
<td>-45°C à 200°C</td>
<td>Cartouche: 330ml</td>
</tr>
<tr>
<td>Dow Corning® SE 4486 CV</td>
<td>Blanc • Mono composant</td>
<td>1,6</td>
<td>19 600</td>
<td>A81</td>
<td>3,9</td>
<td>43</td>
<td>-45°C à 200°C</td>
<td>Tube: 250g, Cartouche: 330 ml</td>
</tr>
<tr>
<td>Dow Corning® TC-1500</td>
<td>Blanc • Mono composant</td>
<td>1,55</td>
<td>NA</td>
<td>A82</td>
<td>2,7</td>
<td>NC</td>
<td>-45°C à 200°C</td>
<td>Cartouche: 330ml</td>
</tr>
<tr>
<td>Dow Corning® SE 4420</td>
<td>Blanc • Mono composant</td>
<td>0,92</td>
<td>108 000</td>
<td>A76</td>
<td>4,1</td>
<td>77</td>
<td>-45°C à 200°C</td>
<td>Tube: 200g, Cartouche: 330 ml, Tonnelet: 20 kg</td>
</tr>
<tr>
<td>Dow Corning® SE 4422</td>
<td>Gris • Mono composant • Norme : UL94 V-1</td>
<td>0,9</td>
<td>200 000</td>
<td>A68</td>
<td>5,1</td>
<td>130</td>
<td>-45°C à 200°C</td>
<td>Cartouche: 330ml</td>
</tr>
<tr>
<td>Dow Corning® EA9189H</td>
<td>Blanc • Mono composant • Norme : UL94 V-0</td>
<td>0,88</td>
<td>NA</td>
<td>A80</td>
<td>3,9</td>
<td>32</td>
<td>-45°C à 200°C</td>
<td>Cartouche: 330ml</td>
</tr>
<tr>
<td>Dow Corning® SE 9184</td>
<td>Blanc • Mono composant • Norme : UL94 V-0</td>
<td>0,84</td>
<td>NA</td>
<td>A74</td>
<td>3,2</td>
<td>60</td>
<td>-45°C à 200°C</td>
<td>Tube: 200g</td>
</tr>
<tr>
<td>EPOXY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permabond® MT3826</td>
<td>Jaune • Bi-composant (2:1) • Epoxy hybride • Souple • Temps de manipulation : 2-3h</td>
<td>1,4-1,6</td>
<td>350 000</td>
<td>A55</td>
<td>1 - 2</td>
<td>>80%</td>
<td>-40°C à 150°C</td>
<td>18-20, Cartouche: 400ml</td>
</tr>
<tr>
<td>Electrolube® TBS</td>
<td>Blanc • Bi-composant • Temps de manipulation : 8 h</td>
<td>1,1</td>
<td>NA</td>
<td>D90</td>
<td>22</td>
<td>NC</td>
<td>-40°C à 120°C</td>
<td>11, Seringue: 20ml</td>
</tr>
<tr>
<td>ACRYLIQUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permabond® TA4392</td>
<td>Blanc • Mono composant • Temps de manipulation : 2-3 min</td>
<td>1,11</td>
<td>200 000 - 400 000</td>
<td>D65</td>
<td>15 - 20</td>
<td>1,5</td>
<td>-55°C à 100°C</td>
<td>25 - 30, Cartouche : 300ml</td>
</tr>
</tbody>
</table>
Les adhésifs époxydes et acryliques sont recommandés pour des assemblages structuraux et semi-structuraux sur une large variété de substrats. Disponibles en bi-composants pour polymérisation à température ambiante ou en mono-composant pour polymérisation à chaud, ils assureront une haute résistance au cisaillement et/ou au pelage. L’ajout de charges thermo-conductrices leur permet d’obtenir des coefficients de conductivité thermique importants. L’excellente résistance chimique des résines époxydes les rend appropriées aux conditions environnementales sévères. Les colles acryliques Permabond disposent d’un temps de fixation très rapide permettant ainsi un rendement important.

Polymérisation à chaud

<table>
<thead>
<tr>
<th>Adhésifs</th>
<th>Propriétés</th>
<th>Conductivité Thermique (W/m.K)</th>
<th>Viscosité (mPa.s)</th>
<th>Dureté Shore</th>
<th>Résistance à la traction (MPa)</th>
<th>Elongation (%)</th>
<th>Temps de polymérisation</th>
<th>Plage de température (°C)</th>
<th>Rigidité Diélectrique (kV/mm)</th>
<th>Conditionnements</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILICONE</td>
<td></td>
</tr>
<tr>
<td>Dow Corning® TC-2035</td>
<td>Rouge • Bi-composant (1:1)</td>
<td>3,3</td>
<td>125 000</td>
<td>A95</td>
<td>3,6</td>
<td>43</td>
<td>30 min à 125°C</td>
<td>-40°C à 200°C</td>
<td>21</td>
<td>Kits: 2x 450g • 2 Kg • 3,2 Kg • 50 Kg</td>
</tr>
<tr>
<td>Dow Corning® TC-2030</td>
<td>Gris • Bi-composant (1:1)</td>
<td>2,7</td>
<td>220 000</td>
<td>A92</td>
<td>4,7</td>
<td>50</td>
<td>60 min à 130°C</td>
<td>-45°C à 200°C</td>
<td>21</td>
<td>Kits: 2x 610ml • 2 Kg • 50 Kg</td>
</tr>
<tr>
<td>Dow Corning® SE 4450</td>
<td>Gris • Mono composant</td>
<td>1,92</td>
<td>66 000</td>
<td>A95</td>
<td>6,7</td>
<td>46</td>
<td>30 min à 150°C</td>
<td>-45°C à 200°C</td>
<td>22</td>
<td>Boîte: 1kg \ Tonnelet: 20 kg</td>
</tr>
<tr>
<td>Dow Corning® 1-4173</td>
<td>Gris • Mono composant • Nom: UL94V-0</td>
<td>1,8</td>
<td>61 000</td>
<td>A92</td>
<td>6,2</td>
<td>20</td>
<td>90 min à 100°C</td>
<td>-45°C à 250°C</td>
<td>16,7</td>
<td>Cartouches: 75ml • 1,5kg \ Tonnelet: 10kg \ 30kg</td>
</tr>
<tr>
<td>Dow Corning® 1-4174</td>
<td>Gris • Mono composant • Avec billes de verre • Nom: UL94V-0</td>
<td>1,78</td>
<td>62 300</td>
<td>A92</td>
<td>6,2</td>
<td>22</td>
<td>90 min à 100°C</td>
<td>-45°C à 200°C</td>
<td>16</td>
<td>Cartouches: 75ml • 1,5kg \ Tonnelet: 10kg \ 30kg</td>
</tr>
<tr>
<td>Dow Corning® 3-6752</td>
<td>Gris • Mono composant</td>
<td>1,7</td>
<td>81 000</td>
<td>A87</td>
<td>3,76</td>
<td>15</td>
<td>3 min à 150°C</td>
<td>-45°C à 250°C</td>
<td>15,7</td>
<td>Tube: 75g \ Tonnelet: 10kg</td>
</tr>
<tr>
<td>Dow Corning® 3-6753</td>
<td>Gris • Bi-composant (1:1) • Avec billes de verre</td>
<td>1,1</td>
<td>10 120</td>
<td>A69</td>
<td>2,8</td>
<td>36</td>
<td>10 min à 150°C</td>
<td>-45°C à 200°C</td>
<td>18</td>
<td>Kit: 1kg \ Tonnelet: 12kg</td>
</tr>
<tr>
<td>Dow Corning® 3-6751</td>
<td>Gris • Bi-composant (1:1) • Nom: UL94V-0</td>
<td>1</td>
<td>9 300</td>
<td>A68</td>
<td>2,8</td>
<td>36</td>
<td>10 min à 150°C</td>
<td>-45°C à 200°C</td>
<td>18</td>
<td>Kit: 1kg • 12kg • 54kg</td>
</tr>
<tr>
<td>Dow Corning® Q1-9226</td>
<td>Gris • Bi-composant (1:1)</td>
<td>0,8</td>
<td>59 000</td>
<td>A67</td>
<td>4,15</td>
<td>120</td>
<td>30 min à 150°C</td>
<td>-45°C à 200°C</td>
<td>25</td>
<td>Kits: 210 ml • 2kg • 4kg • 16kg • 60kg</td>
</tr>
<tr>
<td>EPOXY</td>
<td></td>
</tr>
<tr>
<td>Permabond® ES578</td>
<td>Noir • Mono composant</td>
<td>1,3</td>
<td>600 000 - 800 000</td>
<td>D84</td>
<td>35 - 40</td>
<td>2%</td>
<td>60 min à 130°C \ 30 min à 150°C</td>
<td>-40°C à 150°C</td>
<td>17,7</td>
<td>Cartouche: 320ml</td>
</tr>
<tr>
<td>Permabond® ES579</td>
<td>Ivoire • Mono composant</td>
<td>1,3</td>
<td>60 000 - 90 000</td>
<td>D82</td>
<td>45</td>
<td>1,5%</td>
<td>240 min à 100°C \ 60 min à 120°C \ 45 minutes à 150°C \ 20 minutes à 180°C</td>
<td>-40°C à 150°C</td>
<td>17,7</td>
<td>Cartouche: 320ml</td>
</tr>
</tbody>
</table>
Ce sont les matériaux thermo-conducteurs les plus couramment utilisés. Faciles à manipuler et ne nécessitant pas de polymérisation, ils sont utilisés pour des applications nécessitant une forte conductivité thermique, ils disposent d'une faible résistance thermique et se retirent aisément pour les opérations de maintenance. En général, ces matériaux sont utilisés pour des sources de chaleur ayant une petite surface, comme les circuits intégrés. Ces produits nécessitent une fixation mécanique pour conserver une épaisseur qui est généralement inférieure à 50 microns.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Conductivité Thermique (W/m.K)</th>
<th>Impédance thermique à 40 psi (°C.cm²/W)</th>
<th>Viscosité (mPa.s)</th>
<th>Plage de température en continu (°C)</th>
<th>Rigidité Diélectrique (kV/mm)</th>
<th>Conditionnements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dow Corning® TC-5622</td>
<td>Silicone • Gris</td>
<td>4,3</td>
<td>0,06</td>
<td>95 000</td>
<td>NC</td>
<td>Pot: 1kg</td>
</tr>
<tr>
<td>Electrolube® HTCPX</td>
<td>Huile non-siliconée • Blanc</td>
<td>3,4</td>
<td>NC</td>
<td>606 000</td>
<td>42</td>
<td>Cartouche: 700g Pot: 25 kg</td>
</tr>
<tr>
<td>Dow Corning® TC-5351</td>
<td>Silicone • Gris</td>
<td>3,3</td>
<td>0,25</td>
<td>300 000</td>
<td>6,3</td>
<td>Cartouche: 1kg Tonnelet: 20kg</td>
</tr>
<tr>
<td>Electrolube® HTCPX-LV</td>
<td>Huile non-siliconée • Blanc</td>
<td>3</td>
<td>NC</td>
<td>45 000</td>
<td>42</td>
<td>Pot: 12,5 kg</td>
</tr>
<tr>
<td>Dow Corning® TC-5121 C</td>
<td>Silicone • Gris</td>
<td>2,8</td>
<td>0,09</td>
<td>79 000</td>
<td>1,9</td>
<td>Pot: 1kg • 25 kg</td>
</tr>
<tr>
<td>Electrolube® HTC</td>
<td>Huile non-siliconée • Blanc</td>
<td>2,5</td>
<td>NC</td>
<td>101 000</td>
<td>42</td>
<td>Seringues: 2ml • 20 ml Cartouche: 700g Pots: 1 Kg • 25 kg</td>
</tr>
<tr>
<td>Dow Corning® SE 4490 CV</td>
<td>Silicone • Blanc</td>
<td>1,9</td>
<td>0,77</td>
<td>520 000</td>
<td>4</td>
<td>Pot: 1kg</td>
</tr>
<tr>
<td>Electrolube® HTCX</td>
<td>Huile non-siliconée • Blanc</td>
<td>1,35</td>
<td>NC</td>
<td>127 000</td>
<td>42</td>
<td>Seringues: 35ml Pot: 1kg Cartouche: 700g</td>
</tr>
<tr>
<td>Dow Corning® TC-5080</td>
<td>Silicone • Blanc</td>
<td>1</td>
<td>0,2</td>
<td>836 000</td>
<td>8,7</td>
<td>Pot: 1 kg</td>
</tr>
<tr>
<td>Electrolube® HTC</td>
<td>Huile non-siliconée • Blanc</td>
<td>0,9</td>
<td>NC</td>
<td>202 000</td>
<td>42</td>
<td>Seringues: 2ml • 10ml • 20 ml • 35ml Cartouche: 700g Pots: 1kg • 12,5 kg • 25kg</td>
</tr>
<tr>
<td>Dow Corning® SC 102</td>
<td>Silicone • Blanc</td>
<td>0,9</td>
<td>0,62</td>
<td>29 000</td>
<td>2</td>
<td>Pot: 1kg</td>
</tr>
<tr>
<td>Dow Corning® 340 Heat Sink Compound</td>
<td>Silicone • Blanc</td>
<td>0,67</td>
<td>0,16</td>
<td>542 000</td>
<td>8</td>
<td>Tube: 100g Pot: 10kg</td>
</tr>
</tbody>
</table>
Les Printable Pads sont des versions coulables ou applicables par sérigraphie et non polymérisées des Thermal Pads. Ils permettent de réaliser des Thermal Pads à façon en évitant le surcoût lié à la découpe. Une fois polymérisés, on retrouve les caractéristiques spécifiques des Thermal Pads. L’épaisseur maximum est de 1mm en lien avec leur faible viscosité, mais peut être supérieure via l’utilisation de moules.

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Conductivité Thermique (W/m.K)</th>
<th>Viscosité (mPa.s)</th>
<th>Dureté Shore</th>
<th>Temps de polymérisation</th>
<th>Plage de température (°C)</th>
<th>Rigidité Diélectrique (kV/mm)</th>
<th>Conditionnements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dow Corning® TC-4026</td>
<td>Silicone Bleu • Bi-composant (1:1) • Avec billes de verre* • Normes UL94 V-0 & UL RTI 150°C</td>
<td>2,5</td>
<td>70 000</td>
<td>OO 50</td>
<td>24h à 25°C 40 min à 75°C 15 min à 100°C</td>
<td>-45°C à +200°C</td>
<td>18 Kits: 2kg • 20kg • 40 kg</td>
</tr>
<tr>
<td>Dow Corning® TC-4025</td>
<td>Silicone Bleu • Bi-composant (1:1) • Normes : UL94 V-0 & UL RTI 150°C</td>
<td>2,5</td>
<td>70 000</td>
<td>OO 50</td>
<td>24h à 25°C 40 min à 75°C 15 min à 100°C</td>
<td>-45°C à +200°C</td>
<td>18 Kits: 2kg • 20kg • 40 kg</td>
</tr>
<tr>
<td>Dow Corning® TC-4016</td>
<td>Silicone Bleu • Bi-composant (1:1) • Avec billes de verre* • Normes : UL94 V-0 & UL RTI 150°C</td>
<td>1,7</td>
<td>103 000</td>
<td>OO 50</td>
<td>24h à 25°C 48 min à 75°C 16 min à 100°C</td>
<td>-45°C à +200°C</td>
<td>18 Kits: 2kg • 20kg • 40 kg</td>
</tr>
<tr>
<td>Dow Corning® TC-4015</td>
<td>Silicone Bleu • Bi-composant (1:1) • Normes : UL94 V-0 & UL RTI 150°C</td>
<td>1,7</td>
<td>103 000</td>
<td>OO 50</td>
<td>24h à 25°C 48 min à 75°C 16 min à 100°C</td>
<td>-45°C à +200°C</td>
<td>18 Kits: 2kg • 20kg • 40 kg</td>
</tr>
</tbody>
</table>

Les Gap Filler liquides sont des versions thixotropes des Printable Pads. Ces matériaux offrent une large possibilité d’épaisseurs variant de 150µ à 5 mm grâce à leur consistance gel, consistance qui permet également une dépose verticale sans risque de coulée. Une fois polymérisés, ils présentent une compression importante et d’une faible dureté les rendant adaptés aux applications nécessitant une conductivité thermique importante ainsi qu’une résistance aux vibrations (réduction du stress sur les composants).

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Conductivité Thermique (W/m.K)</th>
<th>Viscosité (mPa.s)</th>
<th>Dureté Shore</th>
<th>Temps de polymérisation</th>
<th>Plage de température (°C)</th>
<th>Rigidité Diélectrique (kV/mm)</th>
<th>Conditionnements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dow Corning® TC-4525</td>
<td>Silicone Bleu • Bi-composant (1:1) • Norme: UL94 V-0</td>
<td>2,5</td>
<td>217 000</td>
<td>OO 55</td>
<td>120min à 25°C 20 min à 50°C 15 min à 80°C</td>
<td>-45°C à +150°C</td>
<td>18 Cartouche: 20 oz (3,2kg) Kit: 40 kg</td>
</tr>
<tr>
<td>Dow Corning® TC-4525GB</td>
<td>Silicone Bleu • Bi-composant (1:1) • Avec billes de verre (180µm)*</td>
<td>2,5</td>
<td>217 000</td>
<td>OO 55</td>
<td>120min à 25°C 20 min à 50°C 15 min à 80°C</td>
<td>-45°C à +150°C</td>
<td>18 Cartouche: 20 oz (3,2kg) Kit: 40 kg</td>
</tr>
<tr>
<td>Dow Corning® TC-4515</td>
<td>Silicone Bleu • Bi-composant (1:1) • Norme: UL94 V-0</td>
<td>1,5</td>
<td>180 000</td>
<td>OO 55</td>
<td>150 min à 25°C 30 min à 80°C</td>
<td>-45°C à +150°C</td>
<td>15,8 Kits: 2kg - 40kg</td>
</tr>
<tr>
<td>Dow Corning® TC-4515 GB</td>
<td>Silicone Bleu • Bi-composant (1:1) • Avec billes de verre (180µm)</td>
<td>1,5</td>
<td>180 000</td>
<td>OO 55</td>
<td>150 min à 25°C 30 min à 80°C</td>
<td>-45°C à +150°C</td>
<td>15,8 Kits: 2kg - 40kg</td>
</tr>
</tbody>
</table>

*Billes de verre : Leur ajout permet un meilleur contrôle de l’épaisseur lors de la dépose de l’interface thermique.
Les Thermal Pads sont, en général, des siliconge souples précutis disponibles sous différentes épaisseurs et conductivités thermiques mais des versions sans silicone sont disponibles pour des applications dans lesquelles cette technologie ne peut être utilisée. Ils ne nécessitent aucune polymérisation et sont idéals lorsque les surfaces sont assez planes et où l'épaisseur de l'interface thermique sera supérieure à 100 microns. La compression ainsi que le fait que ces matériaux soient déjà polymérisés permettent à ces matériaux d'interface thermique (TIM) de conserver leurs formes prêtables. Ils sont faciles à déposer mais aussi à décoller, et sont idéals pour des applications où les opérations de maintenance sont prévues.

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Conductivité thermique (W/m.K)</th>
<th>Dureté</th>
<th>Rigidité Diélectrique (kV/mm)</th>
<th>Épaisseur (mm)</th>
<th>UL94</th>
<th>Renforcé</th>
<th>Nombre faces adhésives (option)</th>
<th>Dimensions packaging feuille*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacem® TH-1950</td>
<td>Silicone • Gris</td>
<td>11</td>
<td>00 50</td>
<td>0,18</td>
<td>0,5 à 3</td>
<td>V-1</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1940</td>
<td>Silicone • Gris</td>
<td>7</td>
<td>00 50</td>
<td>0,18</td>
<td>0,5 à 3</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1880</td>
<td>Silicone • Jaune</td>
<td>6</td>
<td>00 70</td>
<td>5</td>
<td>0,25 à 5</td>
<td>HB</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Electrolube® GP500</td>
<td>Silicone - Blanc</td>
<td>5</td>
<td>68-83 Shore A</td>
<td>7</td>
<td>0,5 à 2</td>
<td>Non</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stacem® TH-1860</td>
<td>Silicone • Violet</td>
<td>3,2</td>
<td>00 45</td>
<td>5</td>
<td>0,5 à 5</td>
<td>HB</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1870</td>
<td>Silicone • Blanc</td>
<td>3,2</td>
<td>00 45</td>
<td>5</td>
<td>0,25 à 5</td>
<td>X</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Electrolube® GP300</td>
<td>Silicone - Bleu</td>
<td>3</td>
<td>73 Shore A</td>
<td>7,5</td>
<td>0,5 à 14</td>
<td>Non</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electrolube® NGP300</td>
<td>Non Silicone - Gris</td>
<td>3</td>
<td>68 Shore A</td>
<td>12</td>
<td>0,3 à 3</td>
<td>Non</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1850</td>
<td>Silicone • Violet</td>
<td>3</td>
<td>00 40</td>
<td>6</td>
<td>0,5 à 5</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1851</td>
<td>Silicone • Violet</td>
<td>3</td>
<td>00 25</td>
<td>6</td>
<td>0,5 à 5</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Saint-Gobain® ThermaCool TC3008</td>
<td>Silicone • Bleu</td>
<td>3</td>
<td>00 50</td>
<td>10</td>
<td>0,5 à 6,3</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1840</td>
<td>Silicone • Rose</td>
<td>2,5</td>
<td>00 40</td>
<td>6</td>
<td>0,5 à 5</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1820</td>
<td>Polyuréthane • Gris</td>
<td>2</td>
<td>00 60</td>
<td>10</td>
<td>0,5 à 5</td>
<td>HB</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Electrolube® NGP200</td>
<td>Non Silicone - Gris</td>
<td>2</td>
<td>68 Shore A</td>
<td>8</td>
<td>0,3 à 3</td>
<td>Non</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Saint-Gobain® ThermaCool TC2006</td>
<td>Silicone • Violet</td>
<td>1,6</td>
<td>00 35</td>
<td>10</td>
<td>0,5 à 6,3</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1820</td>
<td>Silicone • Gris</td>
<td>1,5</td>
<td>00 60</td>
<td>10</td>
<td>0,25 à 5</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1830</td>
<td>Silicone • Bleu</td>
<td>1,5</td>
<td>00 20</td>
<td>6</td>
<td>0,5 à 5</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1810</td>
<td>Silicone • Bleu</td>
<td>1,2</td>
<td>00 60</td>
<td>6</td>
<td>0,25 à 5</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Saint-Gobain® ThermaCool TC3006</td>
<td>Silicone • Vert</td>
<td>1,1</td>
<td>00 35</td>
<td>10</td>
<td>0,5 à 6,3</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1800</td>
<td>Silicone • Bleu</td>
<td>1</td>
<td>00 10</td>
<td>6</td>
<td>0,5 à 5</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-1100</td>
<td>Silicone • Blanc/ Rose</td>
<td>1</td>
<td>00 5</td>
<td>6</td>
<td>0,5 à 10</td>
<td>V-0</td>
<td>X</td>
<td>2</td>
</tr>
</tbody>
</table>

*Découpe selon plan : Nous consulter
Interfaces thermiques

Les interfaces thermiques sont des films précuits, généralement en silicone, pouvant être renforcés par des fibres de verre. Ils sont isolants électrique et peuvent être livrés avec un adhésif thermo-conducteur. Tout comme les Thermal Pads, ils permettent une répétabilité du montage à la différence qu’ils sont disponibles dans de plus fines épaisseurs.

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Conductivité thermique (W/m.K)</th>
<th>Dureté</th>
<th>Rigidité Diélectrique (kV/mm)</th>
<th>Épaisseur (mm)</th>
<th>UL94</th>
<th>Renforcé fibre de verre</th>
<th>Nombre faces adhésives (option)</th>
<th>Dimensions packaging feuille*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacem® TH-2900</td>
<td>Polyuréthane • Bleu</td>
<td>6</td>
<td>A 70</td>
<td>20</td>
<td>0,1 à 0,3</td>
<td>X</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-2200</td>
<td>Silicone • Blanc</td>
<td>5</td>
<td>A 80</td>
<td>20</td>
<td>0,25 à 0,76</td>
<td>V-0</td>
<td>✓</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-2500</td>
<td>Silicone • Rose</td>
<td>3,5</td>
<td>A 75</td>
<td>6</td>
<td>0,125 à 0,5</td>
<td>V-0</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>Saint-Gobain® ThermaCool TC100</td>
<td>Silicone • Bleu</td>
<td>1,3</td>
<td>A 65</td>
<td>10</td>
<td>0,6 à 1,6</td>
<td>HB</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tecnite® DT12</td>
<td>Silicone • Rose</td>
<td>1,2</td>
<td>A 42</td>
<td>>6,5</td>
<td>0,5 à 12</td>
<td>V-0</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Tecnite® DT10</td>
<td>Silicone • Blanc / Rose</td>
<td>1</td>
<td>A 32</td>
<td>>6</td>
<td>0,5 à 12</td>
<td>V-0</td>
<td>✓</td>
<td>2</td>
</tr>
<tr>
<td>Tecnite® UDT08</td>
<td>Silicone • Gris</td>
<td>0,8</td>
<td>A 43 ou A 62</td>
<td>>4</td>
<td>0,5 à 12</td>
<td>V-0</td>
<td>X</td>
<td>2</td>
</tr>
</tbody>
</table>

*Découpe selon plan : Nous consulter
Matériaux à changement de phase

Les matériaux à changement de phase (PCM) sont des matériaux d’interface thermique (TIM) polymérisés et utilisés pour réduire au maximum la résistance thermique entre un composant et son radiateur. Faciles à déposer, ils se ramolissent lorsque la température du composant est comprise entre 50°C et 65°C, épousant ainsi parfaitement l’état de surface des substrats avec lesquels ils sont en contact, permettant ainsi une très faible résistance thermique.

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Coulor</th>
<th>Conductivité thermique (W/m.K)</th>
<th>Impédance thermique à 50ps (°C-In²/W)</th>
<th>Température changement de phase</th>
<th>Tension de claquage (kV)</th>
<th>Plage de tenue en température</th>
<th>Epaisseur (mm)</th>
<th>Dimensions packaging feuille*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolube® TPM350</td>
<td>Screen printable Polymérisation : 8h à 25°C / 2h à 60°C</td>
<td>Gris</td>
<td>3,5</td>
<td>0,8</td>
<td>50</td>
<td>NC</td>
<td>-</td>
<td>Pot de 1 kg</td>
</tr>
<tr>
<td>Stacem® TH-4731</td>
<td>Cire EPDM</td>
<td>Blanc</td>
<td>2,5</td>
<td>0,025</td>
<td>+50°C à +65°C</td>
<td>2</td>
<td>0,127</td>
<td>304,8x406,4</td>
</tr>
<tr>
<td>Stacem® TH-4732</td>
<td>Cire EPDM</td>
<td>Gris</td>
<td>4</td>
<td>0,081</td>
<td>+50°C à +65°C</td>
<td>0,4</td>
<td>0,127</td>
<td>304,8x406,4</td>
</tr>
<tr>
<td>Stacem® TH-4733</td>
<td>Cire EPDM</td>
<td>Gris</td>
<td>4</td>
<td>0,082</td>
<td>+50°C à +65°C</td>
<td>0,4</td>
<td>0,254</td>
<td>304,8x406,4</td>
</tr>
<tr>
<td>Stacem® TH-4734</td>
<td>Cire EPDM</td>
<td>Gris</td>
<td>4</td>
<td>0,085</td>
<td>+50°C à +65°C</td>
<td>0,4</td>
<td>0,38</td>
<td>304,8x406,4</td>
</tr>
<tr>
<td>Stacem® TH-4081</td>
<td>Cire EPDM</td>
<td>Blanc</td>
<td>2,5</td>
<td>0,025</td>
<td>+50°C à +65°C</td>
<td>2</td>
<td>0,127</td>
<td>304,8x406,4</td>
</tr>
<tr>
<td>Stacem® TH-4082</td>
<td>Cire EPDM</td>
<td>Blanc</td>
<td>2,5</td>
<td>0,079</td>
<td>+50°C à +65°C</td>
<td>2</td>
<td>0,254</td>
<td>304,8x406,4</td>
</tr>
<tr>
<td>Stacem® TH-4083</td>
<td>Cire EPDM</td>
<td>Blanc</td>
<td>2,5</td>
<td>0,088</td>
<td>+50°C à +65°C</td>
<td>2</td>
<td>0,5</td>
<td>304,8x406,4</td>
</tr>
</tbody>
</table>

Adhésifs Thermiques

Les adhésifs thermiques sont des adhésifs acryliques double faces thermo-conducteurs. Ils sont parfaitement adaptés dans des applications où la conductivité thermique est nécessaire, et où une fixation mécanique ne peut être utilisée.

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Conductivité thermique (W/m.K)</th>
<th>Durée ténacité</th>
<th>Rigidité Diélectrique (kV/mm)</th>
<th>Epaisseur (mm)</th>
<th>UL94</th>
<th>Renforcé fibre de verre</th>
<th>Nombre faces adhésives</th>
<th>Dimensions packaging rouleau*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacem® TH-7090</td>
<td>Adhésif Acrylique • Noir</td>
<td>1,4</td>
<td>A 45</td>
<td>16</td>
<td>0,3</td>
<td>V-0</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-7120</td>
<td>Adhésif Acrylique • Blanc</td>
<td>1,3</td>
<td>NC</td>
<td>13</td>
<td>0,15 • 0,3 • 0,5</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
</tr>
<tr>
<td>Tecnite® DTT12</td>
<td>Adhésif Acrylique • Blanc</td>
<td>1,2</td>
<td>A 45</td>
<td>>3</td>
<td>0,15 • 0,20 • 0,25</td>
<td>✓</td>
<td>✓ (ep 0,25)</td>
<td>2</td>
</tr>
<tr>
<td>Stacem® TH-7250</td>
<td>Adhésif Acrylique • Blanc</td>
<td>1</td>
<td>NC</td>
<td>24</td>
<td>0,15 • 0,3 • 0,5</td>
<td>V-0</td>
<td>✓</td>
<td>2</td>
</tr>
<tr>
<td>Tecnite® DTT60</td>
<td>Adhésif Acrylique • Blanc</td>
<td>1</td>
<td>A 45</td>
<td>>2</td>
<td>0,15 • 0,20 • 0,25 • 0,30</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
</tr>
<tr>
<td>Saint-Gobain® Thermaco K271</td>
<td>Kapton & Silicone • Blanc/ Vert</td>
<td>0,6</td>
<td>NC</td>
<td>7 kV à 0,114mm</td>
<td>0,114</td>
<td>×</td>
<td>×</td>
<td>1</td>
</tr>
<tr>
<td>Saint-Gobain® Thermaco K275</td>
<td>Kapton & Silicone • Blanc</td>
<td>0,4</td>
<td>NC</td>
<td>65W x 0,127mm</td>
<td>0,127</td>
<td>×</td>
<td>×</td>
<td>2</td>
</tr>
</tbody>
</table>

Interfaces Graphite

Les interfaces graphites sont des matériaux composés de graphite naturel à très haute densité. Ils sont à la fois conducteur thermique et électrique dans les 3 axes (x-y-z). Ils conviennent parfaitement comme alternative économique au cuivre.

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Conductivité thermique (W/m.K) en x-y</th>
<th>Conductivité thermique (W/m.K)en z</th>
<th>Impédance thermique (°C-In²/W)</th>
<th>Durée à traction (N/mm²)</th>
<th>Résistance à la traction (N/mm²)</th>
<th>Epaisseur (mm)</th>
<th>Dimensions packaging Rouleau*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacem® TH-3901</td>
<td>Graphite • Noir</td>
<td>>500</td>
<td>7,5</td>
<td>0,05</td>
<td>D 25-35</td>
<td>10</td>
<td>0,15</td>
</tr>
<tr>
<td>Stacem® TH-3903</td>
<td>Graphite • Noir</td>
<td>>500</td>
<td>7,5</td>
<td>0,05</td>
<td>D 25-35</td>
<td>10</td>
<td>0,29</td>
</tr>
<tr>
<td>Stacem® TH-3401</td>
<td>Graphite • Gris</td>
<td>140</td>
<td>2,5</td>
<td>0,03</td>
<td>D 25-35</td>
<td>5</td>
<td>0,15</td>
</tr>
<tr>
<td>Stacem® TH-3402</td>
<td>Graphite • Gris</td>
<td>140</td>
<td>2,5</td>
<td>0,06</td>
<td>D 25-35</td>
<td>5</td>
<td>0,25</td>
</tr>
<tr>
<td>Stacem® TH-3404</td>
<td>Graphite • Gris</td>
<td>140</td>
<td>2,5</td>
<td>0,11</td>
<td>D 25-35</td>
<td>5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

*Découpe selon plan : Nous consulter
Encapsulants Thermo-Conducteurs

Les encapsulants contiennent des charges thermo-conductrices. Malgré cela, ces produits ont une faible viscosité permettant le remplissage rapide et complet de pièces. Ils permettent à la chaleur d’être évacuée vers les boîtiers métalliques des appareils.

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Conductivité Thermique (W/m.K)</th>
<th>Viscosité (mPa.s)</th>
<th>Durée Shore</th>
<th>Temps de polymérisation</th>
<th>Plage de température (°C)</th>
<th>Rigidité Diélectrique (kW/mm)</th>
<th>Conditionnements</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYMÉRISATION À TEMPÉRATURE AMBIANTE ET ACCÉLÉRABLE À CHAUD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPOXY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dow Corning® ER2220</td>
<td>Epoxy • Grise • Bi-Composant (20.81:1)</td>
<td>1,54</td>
<td>15 000</td>
<td>D 90</td>
<td>24h à 23°C 4h à 60°C</td>
<td>-40°C à +130°C</td>
<td>10 Resin Pack: 250g Kit: 5 kg</td>
</tr>
<tr>
<td>Dow Corning® ER2074</td>
<td>Epoxy • Blanche • Bi-composant (17.31:1)</td>
<td>1,26</td>
<td>16 700</td>
<td>D 80</td>
<td>24h à 23°C 4h à 60°C</td>
<td>-40°C à +130°C</td>
<td>10 Resin Pack: 250g Kits: 1kg • 5kg • 25kg</td>
</tr>
<tr>
<td>Dow Corning® ER4001</td>
<td>Epoxy • Blanche • Bi-composant (4.43:1)</td>
<td>1,20</td>
<td>4 000</td>
<td>D90</td>
<td>24h à 25°C 1h à 80°C+1h à 120°C</td>
<td>-40°C à +150°C</td>
<td>17,7 Resin Pack: 250g Kit: 25 kg</td>
</tr>
<tr>
<td>Dow Corning® ER2221</td>
<td>Epoxy • Noire • Bi-composante (13.91:1)</td>
<td>1,20</td>
<td>3 000</td>
<td>D 90</td>
<td>24h à 23°C 2h à 60°C</td>
<td>-40°C à +150°C</td>
<td>17,7 Resin Pack: 250g Kit: 5 kg</td>
</tr>
<tr>
<td>Dow Corning® ER2183</td>
<td>Epoxy • Noire • Bi-composant (12.78:1)</td>
<td>1,1</td>
<td>6 000</td>
<td>D57</td>
<td>48h à 25°C 6h à 60°C</td>
<td>-60°C à +140°C</td>
<td>15 CW1312 : Pot 25 kg HY300: Pots 50g à 25 kg</td>
</tr>
<tr>
<td>Dow Corning® ER2224</td>
<td>Epoxy • Bi-composant (5.85:1)</td>
<td>0,81</td>
<td>20 000</td>
<td>D75</td>
<td>24h à 25°C 4h à 60°C</td>
<td>-40°C à +150°C</td>
<td>10 Resin Packs: 250g • 500g Kits: 5kg-10 kg • 25kg</td>
</tr>
<tr>
<td>Dow Corning® XB2252</td>
<td>Epoxy • Noire • Bi-composant (100:20)</td>
<td>0,66</td>
<td>2 300</td>
<td>D86</td>
<td>24h à 25°C 6h à 60°C</td>
<td>-50°C à +155°C</td>
<td>29 XB2252 : Pot 25 kg XB2253 : Pot 20 kg</td>
</tr>
</tbody>
</table>

| **SILICONE** |
Dow Corning® TC-6020	Silicone • Gris • Bi-composant (1:1) • Normes : UL94 V-0 & UL RTI 150°C	2,72	10 640	A63	24h à 25°C 13 min à 80°C	-45°C à +200°C	24,1 Kits : 2 kg • 50 kg
Dow Corning® SE 4430	Silicone • Gris • Bi-composant (1:1) • Norme : UL94 V-0	0,96	6 700	O0 70	7h à 25°C 2 min à 150°C	-45°C à +200°C	18 Kits : 2 kg • 50 kg
Dow Corning® CN-8760	Silicone • Gris • Bi-composant (1:1) • Norme : UL94 V-0	0,66	2 850	A 52	24h à 25°C 40 min à 50°C	-45°C à +200°C	26 Kits : 30 kg • 50 kg
Dow Corning® CN-8760	Silicone • Gris • Bi-composant (1:1) • Norme : UL94 V-0 & UL RTI 150°C	0,64	9 100	A 61	30 min à 25°C	-45°C à +200°C	19 Kit : 50 kg
Dow Corning® Sylgard 160	Silicone • Gris • Bi-composant (1:1) • Norme : UL94 V-0 & UL RTI 150°C	0,62	4 865	A 56	24h à 25°C 4 min à 100°C	-45°C à +200°C	19 Kits : 10,8 kg • 49,8kg
Dow Corning® Sylgard 160	Silicone • Gris • Bi-composant (1:1) • Norme : UL94 V-0 & UL RTI 150°C	0,5	1 700	00 20	3h à 25°C 20min à 50°C	-45°C à +200°C	14 Kits : 1 kg • 50 kg
Dow Corning® Sylgard 170	Silicone • Gris • Bi-composant (1:1) • Norme : UL94 V-0 & MIL Spec	0,48	2 135	A 47	24h à 25°C 10 min à 100°C	-45°C à +200°C	18 Kits : 2 kg • 10 kg • 40 kg

| **POLYURÉTHANE** |
Dow Corning® UR5333	Polyuréthane • Noire • Bi-composant (12.15:1)	1,24	30 000	A 90	24h à 23°C 4h à 60°C	-50°C à +125°C	18 Resin Pack : 250g Kit : 5 kg
Dow Corning® CW5660	Polyuréthane • Noire • Bi-composant (100:17) • Norme : UL94 V-0 & Classe F (155°C)	0,7	2 000	A 85	24h à 23°C 6h à 80°C	-50°C à +165°C	19 CW5660 : Pot 25 kg HY5610 : Pot 6,25 kg • Pot 25 kg
Dow Corning® UR5097	Polyuréthane • Noire • Bi-composant (7,46:1) • Norme : UL94 V-0	0,65	6 000	A 85	24h à 23°C 4h à 60°C	-40°C à +110°C	18 Resin Pack : 250g Kits : 5kg • 25kg

| **POLYMÉRISATION À CHAUD** |
| **EPOXY** |
| Dow Corning® SE 4445 CV | Mono composant • Gris • Norme : UL94 V-0 & UL RTI 180°C | 3 | 6 500 à 60°C | D92 | 1h à 120°C +1,5h à 180°C | -60°C à +180°C | NC Pot 25kg |
| Dow Corning® TC-4605 | Bi-composant (100:100) • Marron • Norme : UL94 V-0 & UL RTI 180°C | 1,7 | 5 800 à 60°C | D92 | 1h à 90°C +1,5 h à 140°C | -60°C à +180°C | 25 CW2710 : Pot 25kg HW2711 : Pot 25 kg |

| **SILICONE** |
| Dow Corning® Sylgard Q3-3600 | Silicone • Gris • Bi-composant (1:1) • Norme : UL94 V-0 & UL RTI 180°C | 0,8 | 3 200 | A 89 | 60 min à 150°C | -45°C à +200°C | 26 Bidons : 4 kg • 20 kg • 60 kg |
Guide de sélection
Thermal Management