Heraeus

Technical Data Sheet

ASSEMBLY MATERIALS

Product Type: No Clean Solder Paste Product Name: F640 SAC305-89M30

Description

The Heraeus F640 Paste Series is a lead free, no clean solder paste with outstanding wetting performance for a broad range of applications. The flux system is specifically optimized for lead free alloys, e.g. Sn/Ag/Cu. This formula provides superior performance on a variety of surface finishes and leaves behind a clear residue.

Key Benefits

- Outstanding wetting
- Exceptional print to print consistency
- Min. 8 hours tack and work life
- Siemens Norm compliant

Compliant Products

- Flux SF 64
- Solder Wire W640

Applications

Printing

Product Code and Alloy

Product Code					Powder Properties		
Paste	Alloy	Metal Content	*Viscosity	Powder Type	Particle Size	Alloy	Melting Point
F640	SAC305	89%	М	3	25 – 45 µm	Sn96.5/Ag3/Cu0.5	217 °C
*D. Diananaa grada M. Drint grada II. Drint grada high I. Dianing/latting grada law							

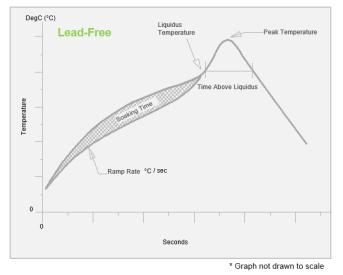
D = Dispense grade M = Print grade H = Print grade, high L = Dipping/Jetting grade, Low

Flux Activity						
Activity Level (J-STD 004)	ISO 9454-1 {DIN EN 29454-1}	Classification				
RELO	1.2.2.C	No Clean/ Solvent Clean				

Halogen Content

Halogen-Containing

Tolerances: CI or Br > 900 ppm, total > 1500 ppm; measured according to BS EN 14582


Testing

Copper Mirror Test (J-STD 004)	Silver Chromate Test (J-STD 004)	
Passed	Passed	
Copper Plate Corrosion Test (J-STD 004)	Surface Insulation Resistance (SIR) Test (J-STD 004) (Bellcore GR78)	
Passed	Passed	

Heraeus

Technical Data Sheet

Recommended Reflow Profile

Recommended Profile					
Average Ramp Rate	1 – 3 °C/s				
	15 °C (min) –				
Peak Temperature	40 °C (max)				
	above Melting				
	Temperature				
Time above liquidus	45 – 90 s				
	Reflow in Air				
Reflow Atmosphere	or in N ₂ with				
Туре 3 – 5	< 2000 ppm 0 ₂				

The descriptions and engineering data shown here have been compiled by Heraeus using commonly-accepted procedures, in conjunction with modern testing equipment, and have been compiled as according to the latest factual knowledge in our possession. The information was up-to date on the date this document was printed (latest versions can always be supplied upon request). Although the data is considered accurate, we cannot guarantee accuracy, the results obtained from its use, or any patent infringement resulting from its use (unless this is contractually and explicitly agreed in writing, in advance). The data is supplied on the condition that the user shall conduct tests to determine materials suitability for a particular application)

Cleaning Instructions

After reflow flux residues may remain on the circuit and do not need to be washed. For cleaning of wet paste or if desired for cleaning of flux residues Zestron and Vigon cleaners can be used – see separate cleaning recommendations.

Storage

- Store the solder paste in tightly-sealed containers and avoid exposure to sunlight and high humidity
- Max expiration date: please refer to the expiry date on the label of the packaged product
- Storage condition in the refrigerator at 2 -10 °C
- Store cartridges with tip pointing downwards

Paste Preparation

- Remove paste from fridge: Before opening the package, leave paste for at least 4 hours (depending on jar/ cartridge size) at room temperature, so that paste warms up
- Do not open jar/cartridge while paste is cold to prevent condensation
- Do not heat the paste beyond room temperature
- Before using of paste jar: To obtain uniform, stable viscosity stir paste for 1 to 2 min, using a stainless steel or chemically resistive plastic spatula
- For further information see Technical Information

Heraeus Electronics

Heraeus Deutschland GmbH & Co. KG Heraeusstraße 12 – 14 63450 Hanau, Germany www.heraeus-electronics.com

Americas

Phone +1 610 825 6050 electronics.americas@heraeus.com

Asia Pacific

Phone +65 6571 7677 electronics.apac@heraeus.com

China

Phone +86 21 3357 5457 electronics.china@heraeus.com

Europe, Middle East and Africa

Phone +49 6181 35 3069, +49 6181 35 3627 electronics.emea@heraeus.com

The descriptions and engineering data shown here have been compiled by Heraeus using commonly-accepted procedures, in conjunction with modern testing equipment, and have been compiled as according to the latest factual knowledge in our possession. The information was up-to date on the date this document was printed (fatest versions can always be supplied upon request). Abhough the data is considered accurate, we cannot guarantee accuracy, the results obtained from its use (nulses this is considered accurate, and the modern table to the modern table. The data is supplied to nor equipment, and have table tables to the condition table to the modern table tables subability for particular application.